UNIVERSAL UST TELL-Seq ${ }^{\text {TM }}$ Library Prep Kit SEQUENCING
 innovation for all
 ```Long-Read Sequencing Made Simple.```

Generate a

TELL-Seq'

Transposase Enzyme Linked Long-read Sequencing is a simple and scalable NGS library technology that generates barcoded linked reads for genome scale sequencing applications. The whole barcoding procedure can be carried out in a PCR tube without the need for expensive instrumentation

TELL-Seq Library Prep kit

- One tube process, simple, fast and economic.
- Enable a short-read sequencer to produce super long-read results, average 20kb to 200kb, or longer
- Require ultra low DNA input, $3-5 \mathrm{ng}$ for human genome, $0.1-0.5 \mathrm{ng}$ for microbial genomes and target sequencing panels

TELL-Seq library

Illumina short-
read

TELL-Seq applications:

\checkmark De novo Sequencing (small and large genomes)
\checkmark Microbiology and metagenomics
\checkmark Whole human genome phasing
\checkmark Whole exome and target phasing
\checkmark Structure variation detection

© Stratech

your first choice for scientific solutions
www.stratech.co.uk
() @stratech_uk
+44 (0) 1638782600
(f) @stratechscientificltd
(in) @stratech-scientific-Itd
find out more:

Microbial de novo Assembly

Turn 0.5 ng Microbial DNA Into an Accurate Genome

E. coli MG1655	TELL-seq
Genome fraction (\%)	99.92
Largest alignment	$4,630,233$
Total aligned length	$4,684,057$
NA50	$4,630,233$
\# misassemblies	0
\# mismatches per 100 kbp	3.15
\# indels per 100 kbp	0.34
\# N's per 100 kbp	0

Human Genome Phasing Application

Method	TELL-Seq			
	NA12878		NA24385	
Coverage Depth (Unique)	$38 \times$	$25 \times$	$46 \times$	$28 \times$
Longest Phased Block	67.5 Mb	39.9 Mb	59.2 Mb	35.0 Mb
N50 Phased Block	14.4 Mb	8.0 Mb	13.4 Mb	9.4 Mb
Switch Error Rate	0.04%	0.05%	0.08%	0.12%

Metagenomics

Metagenomic de novo Assembly and

Taxonomic Analysis \& Quantification

